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4 HEC Montréal, Canada
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Abstract

This paper studies learning meaningful node representations
for signed graphs, where both positive and negative links
exist. This problem has been widely studied by meticu-
lously designing expressive signed graph neural networks,
as well as capturing the structural information of the signed
graph through traditional structure decomposition methods,
e.g., spectral graph theory. In this paper, we propose a
novel signed graph representation learning framework, called
Signed Laplacian Graph Neural Network (SLGNN), which
combines the advantages of both. Specifically, based on spec-
tral graph theory and graph signal processing, we first de-
sign different low-pass and high-pass graph convolution fil-
ters to extract low-frequency and high-frequency information
on positive and negative links, respectively, and then com-
bine them into a unified message passing framework. To ef-
fectively model signed graphs, we further propose a self-
gating mechanism to estimate the impacts of low-frequency
and high-frequency information during message passing. We
mathematically establish the relationship between the ag-
gregation process in SLGNN and signed Laplacian regular-
ization in signed graphs, and theoretically analyze the ex-
pressiveness of SLGNN. Experimental results demonstrate
that SLGNN outperforms various competitive baselines and
achieves state-of-the-art performance.

Introduction
A graph, consisting of a set of nodes and links, is an effi-
cient way to encode the naturally occurring interactions be-
tween objects (West et al. 2001). In a number of social and
economic contexts, interactions between objects can be rep-
resented as signed graphs with positive and negative links.
Typically, positive and negative links encode opposite rela-
tions between objects, and some examples are friendship/en-
mity, trust/distrust, and similarity/dissimilarity. For instance,
users of Epinions review website can express trust or dis-
trust of each other based on their comments. Such graphs
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have attracted considerable attention in various applications,
such as link sign prediction (Leskovec, Huttenlocher, and
Kleinberg 2010), recommendation systems (Yoo, Jo, and
Kang 2017), and community analysis (Mercado, Tudisco,
and Hein 2016).

Signed graph representation learning, which aims to map
nodes to low-dimensional representations, is a fundamental
problem for signed graph analysis with a variety of down-
stream applications. Indeed, graph representation learning
has been extensively studied in the machine learning liter-
ature, and the representative methods are graph neural net-
works (GNNs) (Kipf and Welling 2017; Veličković et al.
2018; Li et al. 2020a; Liu et al. 2022). GNNs adopt a
message passing scheme to obtain its node representations
by aggregating representations from neighbors. However,
most of the literature focuses on graphs with only posi-
tive links, i.e., unsigned graphs. Until fairly recently, studies
have shown that GNN and its variants on unsigned graphs
only perform low-pass filtering on node representations, i.e.,
retain low-frequency information, resulting in similar rep-
resentations of connected nodes (Nt and Maehara 2019).
Therefore, GNNs for unsigned graphs cannot be directly ap-
plied to signed graphs, as they cannot effectively distinguish
between positive and negative links in signed graphs.

In order to model the coexistence of positive and neg-
ative links in signed graphs and characterize the differ-
ences between them, most existing signed graph represen-
tation learning methods (Derr, Ma, and Tang 2018; Li et al.
2020b; Huang et al. 2021; Liu et al. 2021) resort to the bal-
ance theory or its variants (Heider 1946; Cartwright and
Harary 1956). The balance theory is a well-known socio-
psychological theory, which states that social relationships
follow four rules: “the friend of my friend is my friend”, “the
enemy of my friend is my enemy”, “the friend of my enemy
is my enemy” and “the enemy of my enemy is my friend”.
However, the balance theory has been proven equivalent to
a simple assumption that the nodes can be divided into two
disjoint subsets such that there are only positive links within
the subsets and only negative links between them (Mercado,
Tudisco, and Hein 2016), which is too idealistic for real
world signed graphs. This is a distinct limitation when learn-
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ing node representations that can clearly reveal the underly-
ing structure of signed graphs. Fundamentally, the goal of
signed graph representation learning is to make the repre-
sentations of nodes connected by positive links closer and
the representations of nodes connected by negative links far-
ther away in the representation space (Qian and Adali 2014).
This naturally raises the question: is there another way to
achieve this goal and efficiently model positive as well as
negative links in signed graphs?

In this paper, we propose a solution based on spectral
graph theory (Chung and Graham 1997) and graph signal
processing (Dong et al. 2016). Specifically, with the eigen-
decomposition of the graph Laplacian matrix, we can the-
oretically extract information at any frequency by design-
ing a suitable function of the signal frequency (eigenvalues).
Particularly, the low-frequency information retains the sim-
ilarity between connected nodes (Nt and Maehara 2019).
In contrast, the high-frequency information highlights the
dissimilarity between connected nodes (Park et al. 2019).
While in signed graphs, positive and negative links are
strongly correlated with similarity and dissimilarity, respec-
tively (Qian and Adali 2014; Tang et al. 2016). Therefore,
we can naturally bridge the connection between graph sig-
nal processing and signed graph modeling.

Motivated by these analyses, we introduce a Signed
Laplacian Graph Neural Network (SLGNN) for signed
graph representation learning, which can effectively cap-
ture the structural information of signed graphs. To flexi-
bly model positive and negative links, we first divide the
signed graph into two subgraphs with a common set of
nodes, which contain only positive links and negative links,
respectively. Then, we design different graph convolution
filters on each subgraph to extract low-frequency and high-
frequency information, and combine them into a unified
message passing framework. However, low-frequency and
high-frequency information contribute differently to mod-
eling positive and negative links, and the tie-strengths of
different links are also different. To effectively capture
the structural information of signed graphs, a self-gating
mechanism is proposed to quantify the impacts of low-
frequency and high-frequency information during message
passing. From the perspective of numerical optimization,
SLGNN is an extension of signed Laplacian regularization
in signed graphs. We theoretically analyze the expressive-
ness of SLGNN and experimentally evaluate its effective-
ness. The main contributions of our work can be summarized
as follows:

• We propose a novel Signed Laplacian Graph Neural Net-
work framework, named SLGNN, for signed graph rep-
resentation learning.

• We mathematically establish the relationship between
SLGNN and signed Laplacian regularization in signed
graphs, and theoretically analyze the expressiveness of
SLGNN.

• We validate the effectiveness of SLGNN on real-world
signed graphs, showing that SLGNN outperforms vari-
ous baseline methods and achieves new state-of-the-art
performance.

Related Work
In line with the focus of our work, we briefly review the most
related work on graph signal processing and signed graph
representation learning.

Graph signal processing mathematically bridges the gap
between signal processing and spectral graph theory (Chung
and Graham 1997), enabling researchers to define graph
convolution filters in the spectral domain to process sig-
nals in graphs. The work (Bruna et al. 2013) was the first
to generalize the convolution operations in CNN on images
to graph convolution filters based on the spectrum of the
graph Laplacian. Later on, various GNNs were proposed ei-
ther in the spectral domain or the spatial domain (Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2017;
Veličković et al. 2018). The work (Balcilar et al. 2020) fur-
ther establishes the connection between spectral-based and
spatial-based GNNs. Nevertheless, most of them have been
shown to be low-pass graph convolution filters (Nt and Mae-
hara 2019), which will cause the learned node representa-
tions to be too similar to be discernible, i.e., over-smoothing
issue. Recently, some works (Bo et al. 2021; Chien et al.
2021) propose to mitigate over-smoothing and graph het-
erophily issues with adaptive frequency-pass convolution fil-
ters. However, these methods are specifically designed for
unsigned graphs and therefore cannot be directly applied to
signed graphs.

Signed graph representation learning can be traced
back to the eigendecomposition of signed Laplacian (Hou,
Li, and Pan 2003) and matrix factorization-based meth-
ods (Hsieh, Chiang, and Dhillon 2012). Afterwards, most
efforts resort to the balance theory or its variants to model
signed graphs. For instance, SIDE (Kim et al. 2018) and
SIGNET (Islam, Prakash, and Ramakrishnan 2018) propose
to adopt the random walk strategy to maintain the struc-
tural balance. SGCN (Derr, Ma, and Tang 2018) proposes
the first version of signed GCN based on the balance theory.
After that come SiGAT (Huang et al. 2019) and SNEA (Li
et al. 2020b), they adopt attention mechanism (Veličković
et al. 2018) to distinguish the importance of different neigh-
bors. SGDNET (Jung, Yoo, and Kang 2020) proposes to dif-
fuse node representations based on the balance theory. GS-
GNN (Liu et al. 2021) further generalizes the balance the-
ory to the k-group theory and learns both local and global
node representations. Nevertheless, due to the limitation of
the balance theory, these works still suffer from the problem
of decreased expressiveness.

In contrast, SLGNN is based on spectral graph theory and
graph signal processing as well as GNNs. Thus, SLGNN
enjoys the expressive power of GNNs and can capture the
structural information of the signed graph with the help of
spectral graph theory. From a spectral point of view, the
low-frequency and high-frequency information essentially
preserve the similarity and dissimilarity between connected
nodes, respectively, which is the key to distinguish positive
and negative links. By appropriately modeling the similarity
and dissimilarity of the low-frequency and high-frequency
information through a self-gating mechanism, SLGNN can
effectively capture the structural information of the signed
graph, resulting in expressive node representations.
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Preliminary
Let a signed network be G = (G+, G−), where G+ = (V , E+)
and G− = (V , E−) encode positive and negative links, with
a common node set V = {v1, v2, ..., vn}, and E+ ∩ E− =
∅. For each node vi ∈ V , its positive and negative neigh-
bors are denoted as N+

i = {vj |(vi, vj) ∈ E+} and N−
i =

{vk|(vi, vk) ∈ E−}, respectively. Let A+ and A− be the
adjacency matrices of G+ and G−, then the diagonal ma-
trix of the degrees of G+, G− and G are denoted as D+

ii =∑n
j=1A

+
ij ,D−

ii =
∑n

j=1A
−
ij , andD = D++D−+I, where

I represents the identify matrix. The graph Laplacians of G+
and G− are denoted asLG+

=D+−A+ andLG−
=D−−A−.

In addition, the symmetric normalized adjacency-, degree-,
and Laplacian- matrices of G+ and G− normalized by D are
denoted as AG+

sym, DG+

sym, LG+

sym and AG−

sym, DG−

sym, LG−

sym.

Spectral Convolution on Graphs. According to spectral
graph theory (Chung and Graham 1997), signal on graphs
can be filtered using the eigendecomposition of graph Lapla-
cian: L = UλUT , where U consists of all the eigenvec-
tors of L and λ = diag(λ1, ..., λn) is a diagonal matrix
consisting of the corresponding eigenvalues as its diagonal.
In graph signal processing, λi is the signal frequency, and
Ui is the transform basis corresponding to λi. Given a sig-
nal h, the graph Fourier transform of h can be defined as
ĥ = UTh, and its inverse operation as h = UT ĥ. After-
wards, the spectral convolution filter F can be formulated
as: F ∗ h = Uf(λ)UTh, where f(λ) is the graph convolu-
tion filter function corresponding of the signal frequency λ.
By defining the graph convolution kernel as:

F = Uf(λ)UT , (1)

(Balcilar et al. 2020) connects the spectral-based and spatial-
based GNNs in a unified formula:

H(l+1) = σ
( K∑

k=1

FkH(l)W(l,k)
)
, (2)

where σ denotes the nonlinear activation function (such as
ReLU), Fk denotes the k-th graph convolution kernel, H(l)

is the node representations at l-th layer, and W(l,k) is the
learnable parameter matrix.

Proposed Model
In this section, we propose a novel Signed Laplacian Graph
Neural Network framework, SLGNN, for signed graph rep-
resentation learning. Basically, signed graph representation
learning entails the following challenges: (1) How to ef-
fectively distinguish positive and negative links in the rep-
resentation space? (2) How to effectively estimate the tie-
strengths of different links in the underlying structure of
a signed graph? In this work, we propose to address these
challenges based on spectral graph theory and graph signal
processing. Specifically, we design different graph convolu-
tion filters to extract low-frequency and high-frequency in-
formation on positive and negative links, respectively. The
low-frequency and high-frequency information can effec-
tively preserve the similarity and dissimilarity between con-
nected nodes, which is the key for distinguishing positive

high

low

high

positive subgraph

negative subgraph

ReLU

signed
graph vi

vk

vj

low-frequency

high-frequency

low-frequency

high-frequencyfilters

filters

self-gating 
coefficient

self-gating 
coefficient

W+

W− 

W+

( )l
jH

( )l
iH

( )l
kH

L
ij +

H
ij +

H
ik −

L
ik −

ii +

ii

0L H
ij ij ij  + + += − 

0L H
ik ik ik  − − −= − 

( 1)l
i
+H

low

Figure 1: The framework overview of SLGNN.

links from negative links. After combining the graph con-
volution filters into a unified message passing framework,
in order to effectively capture the structural information of
signed graphs, we propose a self-gating mechanism to quan-
tify the impacts of low-frequency and high-frequency infor-
mation as well as estimate the tie-strengths of links between
nodes. With the expressive power of GNNs and the abil-
ity of spectral graph theory to encode structural information
in signed graphs, SLGNN can learn expressive node repre-
sentations. The framework overview of SLGNN is shown
in Figure 1. In the following sections, we will describe our
framework in detail.

Graph Convolution Kernels
In signed graphs, the negative links have different properties
from the positive ones. In order to flexibly model positive
and negative links, we divide the signed graph into two sub-
graphs, which contain only positive links and negative links,
respectively. The following theorem states the connection
between the original signed graph and the two subgraphs
from the perspective of spectral graph theory.

Theorem 1. Let u be an eigenvector of LG+

sym and LG−

sym

with eigenvalues λG+

and λG−
, respectively. Then, u is an

eigenvector of LG
sym with eigenvalue λG+

+ λG−
.

Proof. Using the identities LG+

symu = λG+

u and LG−

symu =

λG−
u, we have LG

symu = (LG+

sym + LG−

sym)u = (λG+

+

λG−
)u, which concludes the proof.

With the theorem, we can flexibly model positive and neg-
ative links by designing different custom low-pass and high-
pass graph convolution filters on each subgraph. In order to
avoid the expensive computation of the eigendecomposition
of graph Laplacians, we design the low-pass and high-pass
filter functions within the linear form of the signal frequency
(eigenvalues).

We first design the low-pass filter functions for G+ and
G− as:

fLG+(λG+

) = ζ +DG+

sym − λG+

(3)

fLG−(λG−
) = DG−

sym − λG−
(4)
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where ζ is the diagonal matrix with learnable ζii in (0, 1),
and λG+

and λG−
denote the eigenvalues ofLG+

sym andLG−

sym,
respectively.

Inserting Eq. (3) and Eq. (4) into Eq. (1), the low-pass
graph convolution kernels for G+ and G− are derived as:

FL
G+ = ζ +DG+

sym − LG+

sym = ζ +AG+

sym (5)

FL
G− = DG−

sym − LG−

sym = AG−

sym (6)

From the prospective of spatial-based methods, the low-
pass filter aggregates information from the node itself and
neighboring nodes, making the node representation of each
node similar to those of its neighboring nodes.

Different from low-pass filters, high-pass filters amplify
the high-frequency signals and attenuate the low-frequency
signals. Thus, we design the high-pass filter functions for
G+ and G− as:

fHG+(λG+

) = ζ −DG+

sym + λG+

(7)

fHG−(λG−
) = −DG−

sym + λG−
(8)

Then, the high-pass graph convolution kernels for G+ and
G− are derived by inserting Eq. (7) and Eq. (8) into Eq. (1):

FH
G+ = ζ −DG+

sym + LG+

sym = ζ −AG+

sym (9)

FH
G− = −DG−

sym + LG−

sym = −AG−

sym (10)

Viewing from a spatial perspective, the high-pass filter
highlights the information difference between node itself
and neighboring nodes, making each node far away from its
neighbors in the representation space.

Graph Convolution
In order to filter low-frequency and high-frequency informa-
tion in signed graphs, we efficiently design multiple graph
convolution kernels. However, increasing the number of
graph convolution kernels increases the number of training
parameters as in Eq. (2), and excessive reduction of training
parameters will reduce the expressiveness of graph neural
networks. To solve this issue, we propose to share train-
ing parameters between graph convolution kernels in the
same subgraph, and use two coefficients (αL

it and αH
it , s.t.,

αL
it ≥ 0, αH

it ≥ 0, and αL
it + αH

it = 1) to quantify the im-
pacts of low-frequency and high-frequency information that
each node aggregates from its neighbors. Combining all the
graph convolution kernels of G+ and G− into Eq. (2), we
reach to our proposed graph convolution in its spatial form:

H(l+1) =σ
(
(αL+(l)FL

G+ + αH+(l)FH
G+)H(l)W

(l)
+

+ (αL−(l)FL
G− + αH−(l)FH

G−)H(l)W
(l)
−

)
=σ

(
(ζ + αL+(l)AG+

sym − αH+(l)AG+

sym)H(l)W
(l)
+

+ (αL−(l)AG−

sym − αH−(l)AG−

sym)H(l)W
(l)
−

)
(11)

where αL+(l) (αL−(l)) and αH+(l) (αH−(l)) denote the co-
efficient matrices for low-frequency and high-frequency in-
formation at l-th layer in G+ (G−), respectively.

For each node vi, its corresponding node representation
Hi at (l+1)-th layer is formulated as:

H
(l+1)
i =σ

(
ζiiH

(l)
i W

(l)
+

+
∑

vj∈N+
i

α
L+(l)
ij − α

H+(l)
ij

∆sym
ij

H
(l)
j W

(l)
+

+
∑

vk∈N−
i

α
L−(l)
ik − α

H−(l)
ik

∆sym
ik

H
(l)
k W

(l)
−

) (12)

where ∆sym
ij and ∆sym

ik are the normalization items, whose
values are

√
DiiDjj and

√
DiiDkk, respectively. In this part,

we omit the superscript (l) in the coefficient notations for
brevity. For each node vi, αL+

ij (αH+
ij ) controls the con-

tribution of similar (dissimilar) node representation from
node vj to make the nodes pair (vi, vj) become similar in
G+, while αL−

ik (αH−
ik ) controls the contribution of similar

(dissimilar) node representation from node vk to make the
nodes pair (vi, vk) become dissimilar in G−. From the in-
herent properties of G+ and G−, it can be concluded that
αL+
ij > αH+

ij and αL−
ik < αH−

ik . Let α+
ij = αL+

ij − αH+
ij and

α−
ik = αL−

ik − αH−
ik , we can easily derive that 0 ≤ α+

ij ≤ 1,
and −1 ≤ α−

ik ≤ 0.
For each node pair (vi, vt), s.t., vt ∈ N+

i ∪ N
−
i , it is

impractical to manually set the coefficients α+
it or α−

it , since
we have no prior knowledge about the tie-strength of the
node pair. Therefore, we propose to learn these coefficients
in a data driven manner and parameterize them as a function
of the node representations of connected nodes by designing
a self-gating mechanism as:

ατ
it = φτ

it · sigmoid(f(HiWτ∥HtWτ )) (13)

where τ ∈ {+,−}. If vt ∈ N+
i , then τ = + and φτ

it = 1;
otherwise, if vt ∈ N−

i , then τ = − and φτ
it = −1. Further,

∥ represents the concatenation operator, f (·) is a function
modeled as a single layer fully-connected neural network to
transform a vector to a scalar, and sigmoid(·) is the sigmoid
function, which maps the output scalar from f(·) to [0, 1].

If we regard the learnable parameter ζii as the self-loop
coefficient, it can also be learned by Eq. (13) as α+

ii . We
further normalize α+

ii to α+
ii/∆

sym
ii to ensure numerical sta-

bility in model optimization. By setting the normalized co-
efficients α+

ii/∆
sym
ii , α+

ij/∆
sym
ij and α−

ik/∆
sym
ik as α+′

ii , α+′

ij

and α−′

ik , Eq. (12) can be reformulated as:

H
(l+1)
i =σ

(
α
+′(l)
ii H

(l)
i W

(l)
+ +

∑
vj∈N+

i

α
+′(l)
ij H

(l)
j W

(l)
+

+
∑

vk∈N−
i

α
−′(l)
ik H

(l)
k W

(l)
−

)
,

(14)

where α
+′(l)
ii > 0, α+′(l)

ij ≥ 0 and α
−′(l)
ik ≤ 0.
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Multi-Head Gating
In order to stabilize the learning process and improve the
robustness of our model, we use a multi-head gating mech-
anism to learn the self-gating coefficients like multi-head
attention mechanism (Veličković et al. 2018). Concretely,
given M independent self-gating heads, each self-gating
head m learns the node representations H

(l+1)
i,m , and these

node representations are then concatenated to generate the
updated node representations:

H
(l+1)
i = σ

(∥∥M
m=1

H
(l+1)
i,m

)
. (15)

In the final layer L of our model, we average the node repre-
sentations from multiple heads to obtain the final node rep-
resentations:

H
(L)
i = σ

( 1

M

M∑
m=1

H
(L)
i,m

)
. (16)

Objective Function
In signed graphs, link signs reveal the relationships between
connected nodes. Thus, we adopt the link sign prediction
problem as the training objective for SLGNN.

For each node pair (vi, vt), we first construct the link rep-
resentation by applying an interactive concatenation to the
pair of node representations:

sit = [Hi,Hi ×Ht,Hi −Ht,Ht], (17)

where Hi × Ht and Hi − Ht encode a notion of relative
position of two nodes (Lipman, Rustamov, and Funkhouser
2010), which can be also regarded as distance encodings in
the representation space (Li et al. 2020a).

A multi-layer perceptron (MLP) is then applied to sit and
produces the probability of node vi and node vt forming a
positive link:

p(vi, vt) = Sigmoid(MLP(sit; θ)) ∈ R1 (18)

Finally, we employ the binary cross entropy loss to train
our model w.r.t this objective, i.e.,

Loss = −1
|E+ ∪ E−|

( ∑
(vi,vt)∈E+

logp(vi, vt)+

∑
(vi,vt)∈E−

log(1− p(vi, vt))

) (19)

Theoretical Analysis
In this section, we establish the connection between SLGNN
and signed Laplacian regularization from the perspective of
numerical optimization, and theoretically analyze the ex-
pressiveness of SLGNN.

Definition 1. (Signed Laplacian Regularization) Given the
noisy node representation X ∈ RN×d on a signed graph G,
the objective of signed graph regularization is to recover an
expressive node representation H ∈ Rn×d that can ensure
node pairs connected by positive links to be similar while

node pairs connected by negative links to be dissimilar, by
solving the following optimization problem (Gallier 2016):

argmin
H

Lreg

=
∑
vi∈V
∥Hi −Xi∥22 +

1

2

∑
vi∈V

∑
vj∈N+

i

c+ij∥Hi −Hj∥22

+
1

2

∑
vi∈V

∑
vk∈N−

i

c−ik∥Hi +Hk∥22,

where the constants c+ij > 0 and c−ik > 0.

The gradient of Lreg with respect to H focusing on node
vi can be rewritten as:

∂Lreg

∂Hi
=2(Hi −Xi) +

∑
vj∈N+

i

(c+ij + c+ji)(Hi −Hj)

+
∑

vk∈N−
i

(c−ik + c−ki)(Hi +Hk).

(20)
Then, the gradient at X is

∂Lreg

∂Hi

∣∣∣
H=X

=
∑

vj∈N+
i

(c+ij + c+ji)(Xi −Xj)

+
∑

vk∈N−
i

(c−ik + c−ki)(Xi +Xk).
(21)

Thus, the one step of gradient descent starting from X
with the adaptive stepsize bi can be formulated as:

Hi ← Xi − bi ·
∂L
∂Hi

∣∣∣
H=X

=
(
1−

∑
vj∈N+

i

bi(c
+
ij + c+ji)−

∑
vk∈N−

i

bi(c
−
ik + c−ki)

)
Xi

+
∑

vj∈N+
i

bi(c
+
ij + c+ji)Xj −

∑
vk∈N−

i

bi(c
−
ik + c−ki)Xk

(22)
By setting α̂+

ij = bi(c
+
ij + c+ji), α̂

−
ik = bi(c

−
ik + c−ki), and

α̂+
ii = 1 −

∑
vj∈N+

i
α̂+
ij −

∑
vk∈N−

i
α̂−
ik, we can get the

following update formula:

Hi ← α̂+
iiXi +

∑
vj∈N+

i

α̂+
ijXj +

∑
vk∈N−

i

−α̂−
ikXk, (23)

which can derive a message aggregation operation similar
to that in Eq. (14) by matching the learnable coefficients
and transforming the node representation. From a spectral
point of view, since α̂+

ij > 0 and −α̂−
ik < 0, the mes-

sage aggregation operation in Eq. (23) essentially aggre-
gates low-frequency information from positive neighbors
and high-frequency information from negative neighbors to
make nodes connected by positive links become similar and
nodes connected by negative links become dissimilar. Thus,
SLGNN is equivalent to the extension of signed Laplacian
regularization in signed graphs.
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In addition to this, we propose to use the squared Eu-
clidean distance as the pair-wise distance of a node pair in
the representation space to more intuitively evaluate the ex-
pressive power of SLGNN. More specifically, given a node
pair (vi, vt) and its corresponding node representations Hi

and Ht, the distance between node vi and node vt is de-
fined by disit = ∥Hi − Ht∥22. Let dis+it and dis−it be the
distance of node representations after one-step message ag-
gregation through positive and negative links, respectively,
and set ζii = ζtt = c, we have

dis+it = ∥(cHi +Ht)− (cHt +Hi)∥22 = |1− c|disit
dis−it = ∥(cHi −Ht)− (cHt −Hi)∥22 = |1 + c|disit

We can easily observe that dis+it < disit < dis−it , which
means SLGNN can make nodes connected by positive links
become similar, while nodes connected by negative links be-
come dissimilar.

Note that these analyses are under the assumption that
node representations are transformed by the same learn-
able matrix. In fact, using different learnable transforma-
tion matrices for the information propagating on positive and
negative links can significantly improve the expressiveness,
which will be demonstrated in the experiments.

Experiments
In this section, we conduct experiments to demonstrate the
effectiveness of SLGNN on link sign prediction task.

Experimental Settings
Datasets. We evaluate SLGNN on four popular signed
graphs:
• BitcoinAlpha and BitcoinOTC are who-trusts-whom

networks of people who trade on Bitcoin platforms and
tag the others trust or distrust.

• Slashdot is a friendship network of people who tag each
other as friends or foes on Slashdot technology-related
news website.

• Epinions is a who-trust-whom network of people give
trust or distrust tags on Epinions consumer review site.

The summary statistics for these signed graph datasets are
provided in Table 1. We can see that the number of positive
and negative links in these signed graphs is highly imbal-
anced, with significantly more positive links than negative
links. Since these signed graphs do not contain initial node
features, as in previous works (Jung, Yoo, and Kang 2020;
Li et al. 2020b), we use Truncated-SVD (Halko, Martinsson,
and Tropp 2011) to generate their initial node features.

Datasets #nodes #pos.links #neg.links #pos/#neg

Bit.Alpha 3775 12721 1399 9.09:1
Bit.OTC 5875 18230 3259 5.59:1
Slashdot 37626 313543 105529 2.97:1
Epinions 45003 513851 102180 5.03:1

Table 1: Statistics of the signed graph datasets.

Baselines & Parameter Settings. We compare SLGNN
with eight representative signed graph representation learn-
ing methods: SIGNET (Islam, Prakash, and Ramakrishnan
2018), SLF (Xu et al. 2019), SGCN (Derr, Ma, and Tang
2018), SiGAT (Huang et al. 2019), SNEA (Li et al. 2020b),
SGDNET (Jung, Yoo, and Kang 2020), SDGNN (Huang
et al. 2021), and GS-GNN (Liu et al. 2021):

• SIGNET proposes a novel random walk strategy to
maintain the structural balance in signed graphs.

• SLF proposes a signed latent factor model to capture the
relationships between nodes in signed graphs.

• SGCN first generalizes GCN model to signed graphs
based on the balance theory.

• SiGAT incorporates graph motifs in signed graphs into
GAT model based on the balanced theory and status the-
ory.

• SNEA introduces an attention mechanism based on the
balance theory to learn the importance of different neigh-
bors in information propagation.

• SGDNET designs a random walk technique based on the
balance theory to diffuse node representations in signed
graphs.

• SDGNN proposes to simultaneously reconstruct link
signs, link directions and signed directed triangles to
model the signed graphs.

• GS-GNN generalizes the balance theory to the k-group
theory and proposes a dual GNN architecture to learn
both the global and the local node representations.

We use the default parameter settings in the officially re-
leased codes of the baseline methods. For a fair comparison,
we change the balanced logistic regression in SGCN and
SNEA to unbalanced logistic regression as the link sign pre-
dictor, since all the other baselines use unbalanced settings
and unbalanced logistic regression for SGCN and SNEA
shows better results on the evaluation metrics. For our pro-
posed method SLGNN, we set the numbers of self-gating
mechanism to M = 4 for BitcoinAlpha, Slashdot and Epin-
ions, and M = 2 for BitcoinOTC, and employ 2 message
aggregation layers, with a node representation dropout rate
of 0.5, a link coefficient dropout rate of 0.5, and the hidden
representation dimension of 64. We use AdaGrad (Duchi,
Hazan, and Singer 2011) to optimize SLGNN with a learn-
ing rate of 0.01, a weight decay of 0.001.

Evaluation Metrics. For each signed graph, we randomly
select 20% of the positive and negative links as the test set,
while ensuring that the residual signed graph is still con-
nected and used as the training set. To comprehensively eval-
uate the performance of SLGNN, we adopt four types of F1
scores: F1-micro, F1-macro, F1-weighted, F1-binary (ab-
breviated as F1-MI, F1-MA, F1-WT, F1-BI) and two types
of the Area Under the Curve (AUC): AUC-P and AUC-L
(taking the estimated target probability and estimated target
label as inputs, respectively) as the evaluation metrics. We
repeat the experiments 5 times with different randomly split
signed graphs, and report the averaged performance.
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Metrics SIGNET SLF SGCN SiGAT SNEA SGDNET SDGNN GS-GNN SLGNN
B

itc
oi

nA
lp

ha
F1-MI 92.82±0.31 91.92±0.17 92.65±0.30 92.08±0.24 92.99±0.29 92.30±0.22 92.55±0.32 92.84±0.51 94.28±0.51
F1-MA 74.91±1.33 74.09±0.92 75.67±1.46 72.93±0.92 76.46±1.19 75.22±0.92 78.04±1.03 79.86±1.18 83.61±0.94
F1-WT 91.92±0.40 91.33±0.24 91.98±0.41 91.20±0.27 92.29±0.36 91.72±0.25 92.36±0.34 92.83±0.45 94.22±0.42
F1-BI 96.11±0.17 95.58±0.09 95.99±0.16 95.70±0.13 96.19±0.16 95.79±0.12 95.89±0.17 96.03±0.29 96.83±0.29

AUC-P 92.02±0.56 87.20±0.69 92.31±0.82 87.71±0.78 92.70±0.58 89.41±0.34 91.88±0.52 89.45±1.07 95.08±0.34
AUC-L 70.29±1.26 71.23±1.18 71.99±1.74 69.05±0.97 72.31±1.20 72.14±1.25 76.75±1.21 79.80±1.46 82.88±0.82

B
itc

oi
nO

T
C F1-MI 90.68±0.29 90.91±0.28 91.72±0.25 90.54±0.26 92.28±0.27 91.80±0.47 92.26±0.28 92.73±0.51 94.48±0.33

F1-MA 79.62±0.71 81.31±0.57 82.37±0.57 79.11±0.87 83.45±0.66 83.54±0.90 84.57±0.65 85.87±0.95 88.99±0.56
F1-WT 90.09±0.33 90.64±0.29 91.32±0.27 89.88±0.35 91.87±0.30 91.67±0.46 92.16±0.31 92.73±0.50 94.41±0.31
F1-BI 94.63±0.16 94.70±0.17 95.21±0.14 94.56±0.13 95.54±0.15 95.20±0.28 95.47±0.16 95.72±0.30 96.77±0.20

AUC-P 90.78±0.73 90.61±0.52 93.21±0.28 90.47±0.58 93.84±0.21 92.97±0.67 94.19±0.26 93.37±0.80 96.87±0.39
AUC-L 76.50±0.77 79.67±0.55 79.67±0.63 75.85±1.12 80.46±0.81 82.49±0.87 83.73±0.89 85.87±1.05 87.95±0.27

Sl
as

hd
ot

F1-MI 83.28±0.10 84.10±0.07 83.17±0.17 82.93±0.09 84.74±0.10 84.22±0.12 84.05±0.18 87.79±0.05 87.83±0.09
F1-MA 76.22±0.15 77.69±0.12 75.73±0.38 75.73±0.11 78.45±0.12 77.31±0.32 77.98±0.26 83.27±0.08 83.27±0.13
F1-WT 82.65±0.11 83.63±0.08 82.40±0.23 82.29±0.08 84.23±0.09 83.53±0.18 83.72±0.19 87.58±0.05 87.61±0.10
F1-BI 89.18±0.07 89.65±0.04 89.17±0.10 88.95±0.06 90.09±0.07 89.82±0.06 89.54±0.12 91.96±0.04 92.01±0.06

AUC-P 88.42±0.08 88.62±0.04 87.75±0.30 87.97±0.07 90.00±0.10 88.98±0.15 88.59±0.11 92.59±0.04 93.22±0.05
AUC-L 74.62±0.15 76.30±0.13 73.89±0.48 74.17±0.10 76.87±0.11 75.43±0.46 76.95±0.27 82.26±0.12 82.15±0.16

E
pi

ni
on

s

F1-MI 91.25±0.05 91.41±0.14 92.34±0.03 90.75±0.07 92.48±0.05 91.76±0.04 92.71±0.04 94.22±0.03 94.40±0.08
F1-MA 82.29±0.09 83.14±0.44 85.12±0.05 81.74±0.17 85.42±0.08 83.93±0.19 86.02±0.09 89.02±0.09 89.44±0.18
F1-WT 90.71±0.05 91.03±0.19 92.04±0.03 90.31±0.08 92.20±0.05 91.43±0.06 92.48±0.05 94.07±0.04 94.28±0.09
F1-BI 94.89±0.03 94.94±0.07 95.48±0.02 94.56±0.04 95.56±0.03 95.14±0.03 95.69±0.02 96.58±0.01 96.68±0.04

AUC-P 93.19±0.06 92.92±0.39 95.17±0.06 93.00±0.09 95.30±0.07 94.42±0.06 95.06±0.06 96.48±0.05 97.02±0.06
AUC-L 78.99±0.08 80.65±0.68 82.75±0.09 79.16±0.20 83.08±0.09 81.54±0.52 84.00±0.15 87.13±0.22 87.79±0.36

Table 2: Link sign prediction results (%, mean±std). The best and second best are bolded and underlined, respectively.

Results & Discussion. Table 2 summarizes the exper-
imental results on link sign prediction. We observe that
SLGNN outperforms all the baseline methods on almost
all the datasets and evaluation metrics, and GS-GNN gen-
erally achieves suboptimal results, followed by SNEA and
SDGNN. On BitcoinAlpha and BitcoinOTC, SLGNN sig-
nificantly outperforms GS-GNN; while on Slashdot and
Epinions, GS-GNN performs close to SLGNN, but still
underperforms SLGNN. The reason is that SLGNN can
adaptively quantify the impacts of low-frequency and high-
frequency information in modeling positive and negative
links, while effectively capturing the structural information
of signed graphs, not only limited to the latent community
structure claimed by GS-GNN. For other baseline meth-
ods, SNEA and SDGNN are superior to the remaining base-
line methods. Specifically, SNEA performs better on F1-
micro, F1-binary and AUC-P, while SDGNN reports better
results on F1-macro, F1-weighted and AUC-L. To sum up,
the significant performance gain of SLGNN indicates that
SLGNN can learn more expressive node representations and
effectively distinguish positive and negative links in signed
graphs.

Ablation Study
We conduct an ablation study on the effectiveness of key
components of SLGNN, and name SLGNN without differ-
ent components as follows - w/o gating: SLGNN without
self-gating mechanism, i.e., setting α+

ij = 1 and α−
ik = −1;

w/o dual: SLGNN without different learnable transforma-
tion matrices for information from positive and negative
links, i.e., replacing W(l)

+ and W(l)
− with W(l). Due to space

limitation, we only report results on BitcoinAlpha and Bit-
coinOTC, as we have similar observations on other datasets.
The performance comparison of SLGNN and its variants
is shown in Table 3. We have the following observations:
the performance of SLGNN without self-gating mechanism
decreases compared to SLGNN, which implies that adap-
tively quantifying the impacts of low-frequency and high-
frequency information is more conducive to modeling posi-
tive and negative links and capturing structural information
of signed graphs; and when we only use the same learnable
parameter matrix to transform the node information, the per-
formance of SLGNN (w/o dual) significantly reduces, which
suggests that using different learnable transformation matri-
ces for the information from positive and negative links can
significantly improve the expressiveness of SLGNN.

Visualization of Link Coefficients
To provide an intuitive understanding of the impacts of low-
frequency information (αLτ

it ) and high-frequency informa-
tion (αHτ

it ) on positive and negative links from the perspec-
tive of the spectral domain, we visualize all the link coeffi-
cients (ατ

it = αLτ
it − αHτ

it , Eq (13)) from the last layer of
SLGNN, as shown in Figure 2. Similar to the ablation study
section, we only use BitcoinAlpha and BitcoinOTC. We can
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Metrics SLGNN w/o gating w/o dual
B

itc
oi

nA
lp

ha
F1-MI 94.28±0.51 93.67±0.75 92.26±0.49

F1-MA 83.61±0.94 82.55±1.50 79.66±0.78

F1-WT 94.22±0.42 93.73±0.64 92.50±0.38

F1-BI 96.83±0.29 96.48±0.43 95.67±0.29

AUC-P 95.08±0.34 94.04±0.60 90.60±0.82

AUC-L 82.88±0.82 82.69±0.69 81.69±0.97

B
itc

oi
nO

T
C F1-MI 94.48±0.33 93.85±0.27 93.49±0.34

F1-MA 88.99±0.56 87.98±0.40 86.98±0.64

F1-WT 94.41±0.31 93.84±0.24 93.40±0.34

F1-BI 96.77±0.20 96.38±0.16 96.19±0.21

AUC-P 96.87±0.39 96.55±0.23 94.37±0.50

AUC-L 87.95±0.27 87.78±0.34 85.96±0.64

Table 3: Ablation study of SLGNN.

observe that the coefficients of negative links are mostly be-
tween (-1.0, -0.7) on BitcoinAlpha and BitcoinOTC, which
implies that high-frequency information dominates the in-
formation aggregation from negative neighbors. Conversely,
low-frequency information plays a decisive role in the in-
formation aggregation from positive neighbors, as the coef-
ficients of positive links on BitcoinAlpha and BitcoinOTC
are distributed in the range of (0.4, 0.9) and (0.4, 0.6), re-
spectively.

Furthermore, to verify the contributions of information
from positive and negative links on each individual node
from the perspective of the spatial domain, we propose to
rank the link coefficients. Specifically, we first convert the
link coefficient of a negative link to a positive number by
taking its absolute value. Then, for each node with both pos-
itive and negative links, we divide all the link coefficients
into 10 buckets (labeled from 1 to 10) in the interval between
the smallest and largest coefficients, such that coefficients
with larger values belong to buckets with higher labels. The
density of the number of coefficients of positive and nega-
tive links in each bucket is shown in Figure 3. We can ob-
serve that the coefficients of negative links are ranked signif-
icantly higher than those of positive links, especially on Bit-
coinOTC. This is because negative links are much sparser
than positive links in signed graphs. In order to guarantee
that nodes connected by negative links remain dissimilar af-
ter information aggregation, node should aggregate as many
dissimilar node representations (i.e., high-frequency infor-
mation) from negative neighbors as possible.

BitcoinAlpha

-1.0 -0.5 0 0.5 1.0

positive
negative

Coefficients

0.5

0.4

0.3

0.2

0.1

0.0

D
en

si
ty

BitcoinOTC

-1.0 -0.5 0 0.5 1.0

positive
negative

Coefficients

D
en

si
ty

0.5
0.4
0.3
0.2
0.1
0.0

0.6
0.7

Figure 2: Visualization of link coefficients.
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Figure 3: Visualization of link coefficients bucket ranking.

Conclusions
In this work, we propose a novel signed graph representa-
tion learning framework - SLGNN, which can learn expres-
sive node representations from signed graphs. Specifically,
we design different graph convolution filters to extract low-
frequency and high-frequency information on positive and
negative links, and combine them into a unified message
passing framework. Furthermore, we design a self-gating
mechanism to quantify the impacts of low-frequency and
high-frequency information for effective capturing the struc-
tural information of signed graphs. The expressiveness of
SLGNN is theoretically analyzed by proving it being an ex-
tension of signed Laplacian regularization in signed graphs.
The empirical evaluations on real-world signed graphs show
that SLGNN outperforms the baselines and achieves state-
of-the-art performance.
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